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Summary 

 

While nonlinear finite element models offer great flexibility in simulating the response 

of structural members to seismic forces, computational methods are required at the 

global level in order to ensure that a numerical solution is found at each time step in 

dynamic analysis. This chapter begins with a generic representation of externally 

applied loads in static and dynamic seismic analyses of structures. Then, algorithms 

used to find equilibrium solutions at each time-step of analysis are discussed. It 

concludes with time integration methods that advance seismic analysis from one time 

step to the next, which are then discussed for static pushover and nonlinear dynamic 

analyses. Pseudo-code for implementation is presented in order to demonstrate the 

computational steps taken by each time integration method and equilibrium solution 

algorithm. Although other computational methods of seismic analysis are available, the 

focus of this chapter is on “OpenSees”, an open source finite element software 

framework, which is available for free download. 
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1.  Representation of Loads in Seismic Analysis 

 

In the modeling of structures with N externally applied loads for seismic analysis, the 

set of applied loads is denoted as an N -vector of time-dependent forces (pseudo-time 

for static analysis) 
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where ( )i t is the time-varying load factor and refi
p is the reference load vector for the 

i -th component of the N -vector of load patterns applied to the structural model. The 

load patterns usually represent gravity loads, lateral loads, and earthquake excitation, 

while time-dependence of the i -th pattern is embodied by  i t . 

 

2. Equilibrium Solution Algorithms 

 

Under seismic loading, it is anticipated that structural members will yield in order to 

dissipate energy and reduce member force demands. Yielding will cause a change in 

member stiffness, thereby requiring an iterative algorithm to find structural equilibrium. 

For arbitrary member force-deformation response, root-finding algorithms enable an 

implicit solution to structural equilibrium and are more versatile and reliable than event-

to-event and explicit solution algorithms. 

 

Each of the following equilibrium solution algorithms seeks the nodal displacements u  

that satisfy the residual equilibrium equation at discrete time steps nt , of a seismic 

simulation  

 

       rn n nt t t  r u p p u 0 ,  (2) 

 

where p  is the time-varying external load vector (discussed later in this chapter) and rp  

is the vector of structural resisting forces assembled from element contributions by 

standard finite element procedures. The nodal displacements at a given time step nt , of 

a seismic analysis are found by iteration 

 
1 1j j j

n n
  u u u ,  (3) 

 

where the superscript 0,1,2,  j  denotes the number of iterations performed until an 

acceptable equilibrium solution is found at the time step nt  or until a tolerable limit on 

j  is set for the search to end the search. The time-dependence indicator  nt  of nodal 

displacements meaning “at time step nt “, is implied by writing  ntu  for simplicity as 

nu , throughout this chapter. At each stage of iteration j , a set of trial nodal 

displacements are computed from which the state of the structure is determined by 
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nonlinear finite element procedures and then checked for satisfaction of the equilibrium 

equations. 

 

2.1. Newton Algorithms 

 

The most general approach to solving equilibrium equations for nonlinear structural 

response is the Newton-Raphson method, and its variants including quasi- and 

accelerated Newton methods. The Newton family of algorithms attempt to find, for a 

given load vector p , the nodal displacements u , that make the residual equilibrium 

vector equal to zero. This equilibrium equation is for nonlinear static analysis. 

Extensions of iterative root finding algorithms for nonlinear dynamic analysis are 

discussed in conjunction with time integration methods later in this chapter. 

 

2.1.1. Newton-Raphson Algorithm 

 

The Newton-Raphson algorithm is frequently used in nonlinear structural analysis due 

to its fast convergence. A first order approximation of the residual vector in Eq. (2) 

leads to the Newton-Raphson iteration 
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By assuming that the residual vector 
1j

r  is zero at iteration 1j  , the following linear 

system of equations is obtained for the displacement increment 
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The partial derivative of the residual force vector of Eq. (2) leads to the tangent stiffness 

matrix of the structural model 
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which is assembled by standard nonlinear finite element procedures from the element 

stiffness matrices evaluated at ju . The displacement increment at each stage of iteration 

in a time step is then found by solution to the linear system of equations 

 
1

T
j j j K u r . (7) 

 

With an initial displacement vector 0u , the Newton-Raphson iteration is performed by 

repeated evaluation of the residual and tangent stiffness until equilibrium is achieved 

(norm of the residual vector is less than a specified tolerance) or the specified tolerable  

number of iterations ( maxj ) is reached, as shown in Figure 1 and the following pseudo-

code. 
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Figure 1. Newton-Raphson algorithm. 
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The advantage of the Newton-Raphson algorithm is its quadratic convergence near the 

exact equilibrium solution where the error at the current iteration is less than the square 

of the error at the previous iteration 

 
2

1 exact 1 exactj jC   u u u u . (8) 

 

The constant C  depends on the first and second derivatives of the residual near the 

exact solution. The main drawback to the Newton-Raphson algorithm is the 

computational expense of repeatedly forming and factorizing the tangent stiffness 

matrix at each stage of iteration. This can represent a significant amount of computation 

for large structural models with thousands of equilibrium equations. 

 

Pseudo-code for the Newton-Raphson algorithm 
U = U0; % Initial guess 

R = Pf - Pr(U); % Initial residual 

jMax given 

j = 0; % Number of iterations 

while norm(R) > tol && j < jMax 

assemble KT = Pr’(U) 

solve dU = KT \ R 

update U = U + dU 

assemble R = Pf - Pr(U) 

j = j + 1; 

end 

 

2.1.2. Modified Newton Algorithm 

 

In an attempt to reduce the computational burden of the Newton-Raphson algorithm, the 

tangent stiffness matrix at the first iteration of a time step can be held constant over all 

subsequent iterations in that time step. All computational steps for this “Modified” 

Newton algorithm stay the same, except for that the tangent stiffness matrix assembly 

and its factorization are moved out of the iteration loop, as shown in Figure 2 and the 

following pseudo-code. 

 

This modification of the Newton algorithm can lead to a significant computational 

savings for large structural models where the tangent stiffness matrix does not change 

substantially during a time step. The drawback of this method is its linear convergence 

rate and the generally larger number of residual evaluations required to find 

equilibrium. A tradeoff between the Newton-Raphson and Modified Newton algorithms 

is achieved by updating the tangent stiffness periodically every m   iterations at any 

time step [9]. The value of m  depends on the relative cost of matrix factorization versus 

residual evaluation for the structural model at hand and generally gives a super-linear 

rate of convergence. 

 

2.1.3. Other Newton Algorithms 

 

Two broad classes of Newton-like methods have been developed: accelerated- and 

quasi-Newton methods. Accelerated Newton methods improve the convergence rate of 

the Modified Newton algorithm by performing low-cost matrix-vector operations, e.g., 
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least squares problems in low-rank Krylov subspaces, at each stage of iteration. Quasi-

Newton methods improve the Modified Newton convergence by altering the tangent 

stiffness matrix, or its factorization, at each stage of iteration in order to improve 

equilibrium search directions. The BFGS method is common in structural mechanics 

applications where the tangent stiffness matrix is symmetric. 

- 

- 
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